Zhu, B. J., C. Liu, Y. L. Shi and X. Y. Liu (2012), Saturated dislocations transient propagation-evolution in olivine structure under ultra high-coupled thermal-force fields, Theoretical and Applied Fracture Mechanics, Doi: 10.1016/j.tafmec.2012.02.002.

  • Created: 2012-05-10
Abstract:Based on the first principle and flow driven pore-network crack theory, the crystal size saturated dislocations transient (10−4–10−5 s) propagation–evolution in olivine structure under ultra high-coupled temperature (200–500 °C) and pressure (0.4–1 GPa) are studied on the parallel CPU&GPU platform. First, the molecular-micro-scale transient fracture model is established by using hybrid hypersingular integral equation and Lattice Boltzmann method, the hydrogen ion and oxonium ion transport–dehydration (HI–OI–TD) in olivine [(FeMg)SiO4] crystal are explored. The bond-strength–length as function of thermal-force–time fields, the limited thermal-force value for HI–OI–TD through the crystal, and the ion state water adsorption in the crystal are calculated, respectively. Then, based on the above results, the crystal size saturated dislocations/defects propagation–evolution is studied. The relationship between the stress distribution and micro-strain under different velocity–time conditions, the saturated dislocations/defects propagation–evolution as function of coupled thermal-force–time fields are obtained. All these findings can helpful understand the mechanism of the dehydration fracturing shale gas, the coal-gas outbursts, and the coseismic triggering issues.